

European Technical Assessment

ETA 25/0163 of 21/07/2025

Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague

Trade name of the construction product TT SS M6, M8, M10, M12, M16

Product family to which the construction

product belongs

eota@tzus.cz

Product area code: 33

Torque controlled expansion anchor

for use in uncracked concrete

Manufacturer Trutek Fasteners Polska Sp. z o.o.

> ul. Wojska Polskiego 3 39-300 Mielec, Poland

Manufacturing plant Production plant no.1

This European Technical Assessment

contains

8 pages including 6 Annexes which form an

integral part of this assessment

This European Technical Assessment is issued in accordance with regulation

(EU) No 305/2011, on the basis of

EAD 330232-01-0601

Mechanical fasteners for use in concrete

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The TT SS A2 and TT SS A4 in sizes of M6, M8, M10, M12 and M16 is torque-controlled expansion fastner for use only in uncracked concrete. Each type comprises a nut, bolt, washer and expansion sleeve. The anchors are made of stainless steel.

The anchor is installed in a drilled hole; tightening the nut draws the cone into the sleeve. The expansion of this sleeve applies the anchorage.

The installed anchor is shown in Annex 1.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance (static and quasi-static loading)	See Annex C 1 and C 2
Displacement	See Annex C 1 and C 2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1 according to EN 13501-1
Resistance to fire	No performance assessed

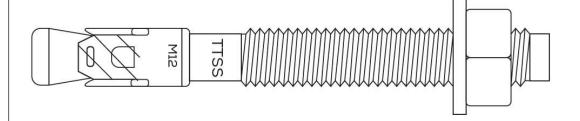
4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹, the system 1 of assessment verification of constancy of performance (see Annex V to the Regulation (EU) No 305/2011) apply.

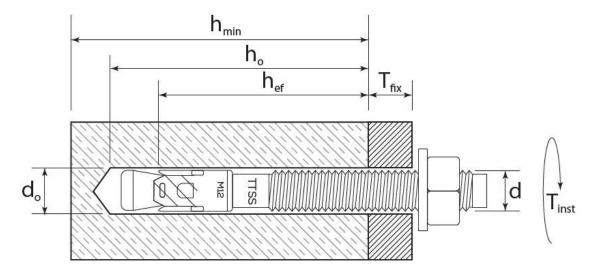
5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Technical and Test Institute for Construction Prague.

Issued in Prague on 21.07.2025


Ву

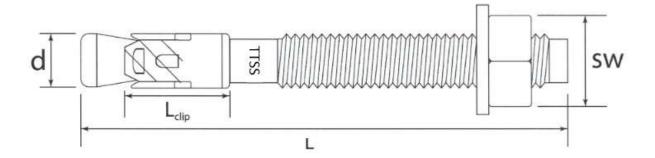
Ing. Jiří Studnička, Ph.D. Head of the Technical Assessment Body



¹ Official Journal of the European Communities L 254 of 08.10.1996

TT SS M6, M8, M10, M12, M16

TT SS M6, M8, M10, M12, M16 - Installed anchor



 d_o = nominal drill hole diameter h_o = minimum drill hole depth h_{ef} = effective embedment depth h_{min} = minimum concrete thickness T_{fix} = thickness of the fixture

TT SS M6, M8, M10, M12, M16

Product description Installed conditions Annex A 1

TT SS M6, M8, M10, M12, M16 - components

Table A1 Dimensions

Type of	anchor	D [mm]	L [mm]	L [mm]	SW [mm]
Size	Marking	נווווון ט	[!!!!!!]	L _{clip} [mm]	
M6	TTSS M6	6	50 ÷ 200	13	10
M8	TTSS M8	8	60 ÷ 250	15	13
M10	TTSS M10	10	70 ÷ 300	8	17
M12	TTSS M12	12	90 ÷ 400	20	19
M16	TTSS M16	16	120 ÷ 400	23	24

Table A2 Materials

	Туре	TT SS A4	TT SS A2
Part	Designation	Material	Material
1	Bolt	Stainless steel A4	Stainless steel A2
2	Clip	Stainless steel A4	Stainless steel A2
3	Hexagonal nut	Stainless steel A4	Stainless steel A2
4	Washer	Stainless steel A4	Stainless steel A2

TT SS M6, M8, M10, M12, M16	
Product description Materials	Annex A 2

Specifications of intended use

Anchorages subject to:

• Static and quasi-static load.

Base materials

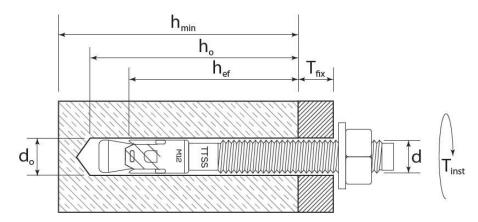
- Uncracked concrete.
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013+A2:2021

Use conditions (Environmental conditions)

- Structures subject to dry internal conditions.
- Structures subject to external atmospheric exposure and to permanently damp internal condition, use according EN 1993-1-4:2006 + A1:2015, corresponding to corrosion resistance class CRC III

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.


Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any components of the anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings using the appropriate tools.
- Effective anchoring depth, edge distance and spacing not less than the specified values without minus tolerance.
- In case of aborted drill hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.

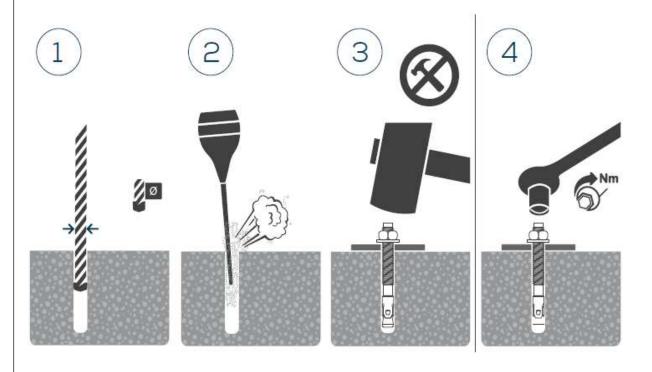

TT SS M6, M8, M10, M12, M16	
Intended use Specifications	Annex B 1

Table B1 Installation parameters	Table B1	installation	parameters
----------------------------------	----------	--------------	------------

Size			M6	M8	M10	M12	M16
Nominal drill hole diameter	d_{o}	[mm]	6	8	10	12	16
Drill hole depth	h_o	[mm]	55	65	70	90	120
Overall embedment depth	h_{nom}	[mm]	47	55	60	80	100
Effective embedment depth	h_{ef}	[mm]	40	41	45	62	88
Minimum concrete thickness	h_{min}	[mm]	100	100	100	130	180
Minimum spacing	Smin	[mm]	40	45	60	70	70
Minimum edge distance	C _{min}	[mm]	40	45	70	85	85
Required setting torque	T _{inst}	[Nm]	10	15	25	65	110

Installation instructions

TT SS M6, M8, M10, M12, M16	
Intended use	Annex B 2
Installation parameters	
Installation instructions	

Table C1 Characteristic resistance under tension load								
Size				M6	M8	M10	M12	M16
Steel failure								
Characteristic resistar	nce	$N_{Rk,s}$		8,8	17,9	29,3	47,6	84,6
Partial safety factor		$\gamma_{\rm Ms}^{1)}$	[-]			1,68		
Pull-out failure								
Characteristic resistance in uncracked concrete ($N_{Rk,p}$	[kN]	7,0	12,0	14,0	24,0	40,0
Robustness		γinst	[-]	1,0	1,2			
Increasing factor		C30/37		1,0	1,08	1,06	1,06	1,04
Increasing factor for uncracked concrete		C40/50 ψ _c	[-]	1,0	1,32	1,23	1,23	1,15
ioi uncrackeu concrete		C50/60		1,0	1,42	1,30	1,30	1,19
Concrete cone and splitting failure								
Factor for concrete con for uncracked concrete		$k_{ucr,N}$	[-]	11,0				
Robustness		γinst	[-]	1,0 1,2				
Effective embedment	depth	h_{ef}	[mm]	40	41	45	62	88
Concrete cone failure	Edge dista	ance c _{cr,N}	[mm]	·		1,5 • h _{ef}		<u> </u>
Concrete cone fallule	Spacing	S _{cr,N}	[mm]			3 • h _{ef}		
Splitting failure	Edge dista		[mm]	100	120	135	185	265
Splitting failure	Spacing	Scr.sp	[mm]	200	240	270	370	530

¹⁾ in absence of other national regulations

Table C2 Displacement under tension load

Size			M6	M8	M10	M12	M16
Tension load in uncracked concrete	Ν	[kN]	3,3	4,8	5,6	9,5	15,9
Displacement	δ_{N0}	[mm]	0,7	1,0	1,9	2,4	3,0
	δ_{N^∞}	[mm]	0,3	1,1			

TT SS M6, M8, M10, M12, M16	
Performances Characteristic resistance under tension load	Annex C 1
Displacement under tension load	

Table C3 Characteristic resistance	o undor oh	oor lood					
Size	e under si	ieai ioau	M6	M8	M10	M12	M16
Steel failure without lever arm						I	
Characteristic resistance	$V^0_{Rk,s}$	[kN]	7,0	12,0	20,0	29,2	50,7
Ductility factor	k ₇	[-]			0,8		
Partial safety factor	γ _{Ms} 1)	[-]			1,40		
Steel failure with lever arm							
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	11	26	52	92	233

Steel failure with lever arm							
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	11	26	52	92	233
Partial safety factor	γ _{Ms} 1)	[-]			1,40		

Concrete pry-out failure							
Factor	k_8	[-]	1,0	1,0	1,0	2,0	2,0

Concrete edge failure							
Effective length of anchor	ℓ _f	[mm]	40	41	45	62	88
Anchor diameter	d _{nom}	[mm]	6	8	10	12	16

¹⁾ in absence of other national regulations

Table C4 – Displacement under shear load

Size			M6	M8	M10	M12	M16
Shear load in uncracked concrete	V	[kN]	3,6	6,1	10,2	14,9	25,9
Displacement	δ_{V0}	[mm]	1,2	1,5	1,6	1,6	1,7
	δ_{V^∞}	[mm]	1,8	2,3	2,4	2,4	2,6

TT SS M6, M8, M10, M12, M16	
Performances Characteristic resistance under shear load Displacement under shear load	Annex C 2